A PHENIX Perspective on Soft Observables

Jason Newby for the PHENIX Collaboration Lawrence Livermore National Laboratory

Heavy Ion Collisions

Time Evolution

QCD beyond normal nuclear temperature & density

Are we creating a thermalized medium?

- •Is medium sufficiently hot and dense?
- Does the medium exhibit collective behavior?

Are we creating a new Phase?

- •Do we observe critical behavior?
- Space-Time evolution?

Explore the properties of the medium!

- Temperature
- Parton Number Density
- Energy Density
- Opacity
- Viscosity
- Pressure
- Thermalization Time & Extent
- Deconfinement
- Degrees of Freedom
- Recombination to Final State
- Equation of State
- Color Thermal Transport Properties
- Space-Time Evolution

Experimental Observables

Trends:

System Size: p+p A+A p+A Collision Energy

Run	Species	Energy	Events
I	Au+Au	130	IOM
2	Au+Au p+p	200 200	170M 3.7G
3	d+Au p+p	200 200	5.5G 6.6G
4	Au+Au	200 62	1.6G 58M
5	Cu+Cu p+p	200 62 22.5 200	8.6G 0.4G 9M 85G

- Multiplicity
- Transverse Energy
- Identified Spectra
- Particle Ratios
- Fluctuations
- Elliptic Flow
- Bose-Einstein Correlations
- Hard Probes
 - See presentation by D Peressounko

PHENIX Experiment

Identified

$$\pi^{\pm}, K^{\pm}, p, \bar{p}, d, \bar{d}, e^{\pm}, \mu^{\pm}$$

Reconstructed $\pi^0, \Lambda, \Phi, J/\psi$

Event Characterization

Centrality

 N_{ch} (3< η <4)

Participating Nucleons, Npart Binary N-N Collisions, Ncoll

Reaction Plane

Energy Density: Nch & Et

 $\langle m_T
angle \simeq rac{a\,E_T/a\eta}{d\,N/d\eta} \qquad t = rac{n}{m_T}$ $\langle \epsilon\,(au_{formation})
angle = rac{1}{ au_{formation}A} rac{dE_T\,(au_{formation})}{dy}$

Peak Energy Density + 15 GeV/fm³

Nucl. Phys. A757 (2005) 184-283

Chemical Equilibrium

Increased System size reduces constraints on locally conserved quantities.

Thermal Model¹

$$T_{chem} = 157 \pm 3 \text{ MeV}$$
 $\mu_B = 23 \pm 3 \text{ MeV}$
 $\gamma_S = 1.03 \pm 0.04$
¹Kaneta and Xu

Strangeness fully saturated.

Spectra

- Pion contribution from decays at low pt
- Kaons exponential over measured range
- Protons comparable to π's above 2GeV/

Proton excess at mid-p_T not observed in p+p, d+Au

 $\langle \beta_T \rangle \sim 0.5$

PH***ENIX**

Radial Flow

Hydrodynamic Fit $T_{fo} = 109 \text{ MeV}$ $\beta_T = 0.77$

Time Evolution of Energy Density in the Bjorken Picture

Nucl. Phys. A757 (2005) 184-283

Elliptic Flow

Spatial Anisotropy

$$\varepsilon = \frac{\langle y^2 \rangle - \langle x^2 \rangle}{\langle y^2 \rangle + \langle x^2 \rangle}$$

Momentum Anisotropy

$$\frac{d^2N}{d\phi dp_T} = N_0 (1 + 2v_2 (p_T) \cos(2\phi))$$

Elliptic Flow Saturated

Elliptic Flow - Heavy Flavor

Charm flow may indicate thermalization of charm.

Charm extracted from electron spectra

Hadronization

What are the relevant degrees of freedom?

Φ meson follows π⁰ trend

Quark Recombination models features:

- Increased Baryon Production at mid-p⊤
- •v₂ scales with quark number not mass

V. Greco, C.M. Ko, Phys. Rev. C70(2004)024901.

Fluctuations

$$v(Q) = \frac{\langle Q^2 \rangle - \langle Q \rangle^2}{n_{ch}}$$

$$M_{p_T} = \overline{p_T} = \frac{1}{n} \sum_{i=1}^n p_{T_i}$$

$$\omega_{p_T} = \frac{\sigma_{M_{p_T}}}{\langle M_{p_T} \rangle},$$

$$F_{p_T} = \frac{\omega_{p_T, \text{data}} - \omega_{p_T, \text{mixed}}}{\omega_{p_T, \text{mixed}}}$$

Non-random fluctuations in Q associated with critical behavior near QGP phase boundary not observed.

Phys. Rev. Lett.93(2004)092301.

Femtoscopy

BE Enhancement at small relative momentum

Space-Momentum Correlations

System size

HBT Puzzle

T. Hirano, K. Tsuda, Phys. Rev. C66(2002)054905 U.W. Heinz, P.F. Kolb,hep-ph/0204061

Future HBT analyses offer new insight

Full Hydrodynamic calculations fail to reproduce HBT radii!

Opacity corrections?

Cramer et al.

Some Hydro Parameterizations
effectively describe data:
Blast-Wave
Buda-Lund
Cracow

Other HBT Handles

Species Dependence

Particles in the same flow field have similar k_T dependence.

Azimuthal Dependence

 $<\Delta \phi_{pair}> [rad]$

 ${
m Ros}^2$ [${
m fm}^2$

 $<\Delta \phi_{\text{pair}}> [\text{ rad }]$

PHENIX PRELIMINARY

S_{NN}=200GeV Au+Au 0.2-<k_T<2.0 GeV/c

New Tools ...

HBT Imaging will investigate non-Gaussian Sources

Long-range structure in the pion source.

Future Measurements

- •PHENIX Measurement of Particle Yields at High p_T with Respect to Reaction Plane in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV, David Winter
- •High p_T p⁰, h, identified charged hadron and inclusive charged hadron spectra from PHENIX, Maya Shimomura
- Probing Cold and Hot, Dense Nuclear Media via High p_T Jets with Di-hadron and gamma-hadron Correlations with PHENIX, Nathan Grau
- •Flavor Dependence of jet-correlations in Au+Au collisions at √s_{NN}=200GeV with the PHENIX Detector, Wolf Holzmann
- •Measurement of Direct Photons in $\sqrt{s_{NN}}$ = 200 GeV p+p, d+Au, and Au+Au Collisions with the PHENIX Experiment at RHIC, Stefan Bathe
- •Evidence for a long-range pion emission source in Au+Au Collisions at sqrt(s_NN)=200GeV in PHENIX, Paul Chung
- •Systematic study of identified particle production in PHENIX, Masahiro Konno
- •Anisotropic Flow in √s_{NN} = 200 GeV Cu+Cu and Au+Au collisions at RHIC PHENIX, Hiroshi Masui
- •Nuclear modifications and elliptic flow measurements for phi mesons at √s_{NN} = 200 GeV dAu and AuAu collisions by PHENIX, Dipali Pal
- Measurement of event-by-event fluctuations and order parameters in PHENIX, Tomoaki Nakamura
- •PHENIX results on J/y production in Au+Au and Cu+Cu collisions at √s_{NN}=200 GeV, Hugo Pereira
- •Study of J/y Production in p+p and d+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV by the PHENIX Experiment, Sasha Lebedev
- •Heavy flavor production in p+p and d+Au collisions at √s_{NN}=200 GeV, from single leptons over a wide kinematic range, Youngil Kwon
- •PHENIX results on Open Heavy flavor production in Au+Au collisions at √s_{NN}=200 GeV, Sergei Butsyk
- •Comparison of f properties as seen in dielectron and hadronic decay channels in Au+Au collisions by PHENIX at RHIC, Sasha Kozlov
- First measurement of omega-meson production with the PHENIX Experimetn at RHIC, Viktor Riabov
- •Measurement of low mass dielectron continuum in $\sqrt{s_{NN}}$ =200 GeV Au-Au collisions in the PHENIX Experiment at RHIC, Alberica Toia
- •Analysis of three-particle correlations in √s_{NN} = 200 GeV Au+Au collisions at PHENIX, Mate Csanad

Summary

- PHENIX measurements of soft and hard observables are an essential component of the exciting, comprehensive physics program at RHIC.
- Multiplicity and Transverse energy measurements indicate energy densities well above QCD critical energy density, I5 GeV/fm³
- Identified spectra demonstrate strong hydrodynamic flow with energy density of ~5.4 GeV/fm³
- Particle Ratios and identified spectra indicate thermalized medium with strangeness fully saturated
- Mid-p_T proton excess and constituent quark scaling of v₂
 consistent with partonic degrees of freedom
- HBT Radii inconsistent with full hydrodynamic calculations.
- Ongoing analyses of High Statistics Au+Au and Cu+Cu datasets promise new insight.

PHENIX Collaboration

- University of São Paulo, São Paulo, Brazil
- · Academia Sinica, Taipei 11529, China
- China Institute of Atomic Energy (CIAE), Beijing, P. R. China
- Peking University, Beijing, P. R. China
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 12116 Prague, Czech Republic
- Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, 11519 Prague, Czech Republic
- · Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague, Czech Republic
- · Laboratoire de Physique Corpusculaire (LPC), Universite de Clermont-Ferrand, 63 170 Aubiere, Clermont-Ferrand, France
- Dapnia, CEA Saclay, Bat. 703, F-91191 Gif-sur-Yvette, France
- IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, BP1, F-91406 Orsay, France Paris Sud, CNRS-IN2P3, BP1, F-91406 Orsay, BP1, F-91406 Orsay,
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Rout Saclay, F-91128 Palaiseau, France
- SUBATECH, Ecòle des Mines at Nantes, F-44307 Nantes France
- University of Muenster, Muenster, Germany
- KFKI Research Institute for Particle and Nuclear Physics at the Hungari Academy of Sciences (MTA KFKI RMKI), Budapest, Hungary
- Debrecen University, Debrecen, Hungary
- Eövös Loránd University (ELTE), Budapest, Hungary
- Banaras Hindu University, Banaras, India
- Bhabha Atomic Research Centre (BARC), Bombay, India
- · Weizmann Institute, Rehovot, 76100, Israel
- Center for Nuclear Study (CNS-Tokyo), University of Tokyo, Tanashi, Tokyo
- Hiroshima University, Higashi-Hiroshima 739, Japan
- Ibaraki 305-0801, Japan
- Kyoto University, Kyoto, Japan
- · Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki, Japan
- RIKEN, The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
- RIKEN BNL Research Center, Japan, located at BNL
- Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
- · Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan
- University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi Ibaraki-ken 305-8577,
- Waseda University, Tokyo, Japan
- Cyclotron Application Laboratory, KAERI, Seoul, South Korea
- Kangnung National University, Kangnung 210-702, South Korea
- · Korea University, Seoul, 136-701, Korea
- Myong Ji University, Yongin City 449-728, Korea
- System Electronics Laboratory, Seoul National University, Seoul, South Korea
- Yonsei University, Seoul 120-749, Korea
- IHEP (Protvino), State Research Center of Russian Federation "Institute for High Energy Physics", Protvino 142281, Russia
- Joint Institute for Nuclear Research (JINR-Dubna), Dubna, Russia
- · Kurchatov Institute, Moscow, Russia
- · PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Vorob'evy Gory, Moscow 119992, Russia
- Saint-Petersburg State Polytechnical Univiversity, Politechnicheskayastr, 29, St. Petersburg, 195251, Russia

Lund University, Lund, Sweden

PHENIX

- Abilene Christian University, Abilene, Texas, USA
- Brookhaven National Laboratory (BNL), Upton, NY 11973, USA
- University of California Riverside (UCR), Riverside, CA 92521, USA
- · University of Colorado, Boulder, CO, USA
- Columbia University, Nevis Laboratories, Irvington, NY 10533, USA
- Florida Institute of Technology, Melbourne, FL 32901, USA
- Florida State University (FSU), Tallahassee, FL 32306, USA
- · Georgia State University (GSU), Atlanta, GA, 30303, USA
- University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
- Iowa State University (ISU) and Ames Laboratory, Ames, IA 50011, USA
- Los Alamos National Laboratory (LANL), Los Alamos, NM 87545, USA
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA
- University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico State University, Las Cruces, New Mexico, USA
- Department of Chemistry, State University of New York at Stony Brook (USB), Stony Brook, NY 11794, USA
- Department of Physics and Astronomy, State University of New York at Stony Brook (USB), Stony Brook, NY 11794, USA
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
- University of Tennessee (UT), Knoxville, TN 37996, USA
- Vanderbilt University, Nashville, TN 37235, USA

*as of March 2005

